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ABSTRACT 

If, in a spinodal point, the rank of the stability matrix is less than the 
order of this matrix minus one, then Gibbs’ determinant criterion for 
the critical state loses its importance since it is fulfilled automatically 
by the spinodal condition. In this paper a generalized critical state 
criterion is established for such degenerate cases in polydisperse poly- 
mer solutions. 

INTRODUCTION 

To calculate critical states for multicomponent systems, more than a 
hundred years ago Gibbs [ I ]  established the well-known necessary criterion 

D = positive semidefinite; ID 1 = det D = 0; 1 D1 1 = 0. (1) 

In Eq. (l), D is the matrix of the second-order partial derivatives of the molar 
Gibbs free energy G with respect to the independent mole fractions Xi 
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1128 BERGMANN, KEHLEN, AND RATZSCH 

(i = 1, . . . , N) of the (N t 1)-component system under consideration. The 
matrix D 1  is obtained from D by substituting a IDl/aXj for the elements of 
the first, or of an arbitrary other, row. 

But only as recently as 1985 Solc and Koningsveld [2] pointed out that 
Eq. (1) has to be completed by the requirement that only those rows of the 
matrix D that possess at least one element with a cofactor different from zero 
are used for the substitution. This requirement immediately leads to the 
question of which critical state criterion has to be applied if no row of the 
matrix D has the mentioned property, i.e., if together with ID1 also all of its 
(N - 1)-rowed minors equal zero. 

In an earlier paper [3] the present authors treated a more general problem 
resulting in the statement: If, besides iDI, also all of its ( N -  i)-rowed minors 
(i = 0, . . . , m - 1 <N) equal zero and if at least one of its ( N -  m)-rowed 
minors differs from zero (i.e., if rank D = N -  m), then in a (stable) critical 
state all determinants Djip (0 < i < j < p < m) equal zero. These determinants 
Djjp possess N - m t 1 rows and are calculated as described in the cited paper 
[3]. If m = 1, then this statement is equal to the classical Gibbs criterion in 
the refined version of Solc and Koningsveld [2]. 

A critical state with rank D < N - 1 shall be named “degenerate.” With 
increasing number (N + 1) of components the order of the determinants 
becomes larger and the calculation of degenerate critical states (TC, XI,, . . ., 
XNC) becomes much more difficult. (For polydisperse polymer solutions, N 
may equal 1000 or 2000.) The problem is that, in such a degenerate critical 
point, all (N - +rowed minors (i = 0, . . . , m - 1) of ID1 and all Dijp (0 < i < 
j < p < m) equal zero simultaneously, whereas the computer calculates values 
different from zero due to its limited number of digits, and the problem gets 
worse with increasing N. 

Therefore, the question is treated in this paper whether it is possible to de- 
rive simpler criteria for degenerate critical states by assuming the moment- 
dependent Gibbs free energy relation for polydisperse polymer solutions con- 
sidered by Irvine and Gordon [4]. This relation generalizes the original 
Flory-Huggins function so as to embrace most functions of practical use in 
polymer thermodynamics. On the assumption of this relation, criteria for 
regular (i.e., nondegenerate) critical states are known [4, 51. 

The development will be performed by applying the concept of continu- 
ous thermodynamics [ 6 . 7 ] .  For the results obtained, the transition to tradi- 
tional notation is immediately possible by writing all occurring moments 
as finite sums. 
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POLY DISPERSE POLYMER SOLUTIONS 1129 

PROBLEM 

Considering a polydisperse polymer solution the nonlinear part AE of t_he 
Gibbs free energy per mole of segments depencis on the segment fraction XA 
of the solvent A, the overall segment fraction XB of the polydisperse polymer 
B and on its (normalized) segment-molar distribution density function @B (M): 

Here FA t ZB = 1 ; J ~B(M) d M =  1. The quantities TA > 0, Q(M) > 0 are 
the segment numbers of the solvent molecules and of the polymer species 
identified by the molecular weight M withMo < M < f l .  The integrals are 
generally to be taken from Mo to fl . Equation (2) generalizes the classical 
Flory-Huggins expression [ 8 , 9 ] ,  assuming to depend on some moments 
rgi = J ['~(hf)] k i ? ~  GB(M) dM: r = r(T,p,yB1, . . . ,?B'). These moments 
also include the zeroth moment, i.e., the number k,  = 0 is also among the 
different real numbers ki (i = 1, . . . , n). 

The necessary conditions for the spinodal and for the critical state can be 
expressed in the framework of continuous thermodynamics as follows [ 101 : 

If the system is located on the spinodal, then 

- 

(AE/R T )  o for a11 variations s(?B EB) (3 a> 

and 

there exists a variation S(?BEB)O f 0 leading to 6 2 ( A ~ / l ? ~ o  = 0 (3b) 

If the system is in a (stable) critical state, then Eqs. (3a,b) are valid, and 

S3(AE/RZ90 = 0 for all variations ~ ( T B  @B), obeying Eq. (3b). (4) 

Here Sk(Az/RT) is the kth variation of AE/RT: 
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1130 BERGMANN, KEHLEN, AND RATZSCH 

- -  
and S ( ~ B  WBli s  a random variation of the nonnormalized distribution density 
function f~ ~B(M). The index 0 at 6k(Ae/RT) indicates that this variation 
in Eq. ( 5 )  obeys Eq. (3b). Furthermore, in Eq. ( 5 )  xA = 1 - ZB = 1 - TB' was 
used. Equations (2) and (5) result in 

with 

and 

Introducing the abbreviations 

the matrices2 with elements rjj, C with elements cij, and Q with elements 
4ij = <j + Ci j  (?ij are the elements of the matrix R-' inverse to I? j, and a gen- 
eralized differentiation D .  . I D .  . by 

it was shown earlier [l 11 : If rB(M) possesses at least n different values and 
if rank Q-= n - 1 for the thermodynamic state considered, whch is identified 
by ( T , P ~ B  h), then the statements of Eqs. (3a), (3b), and (4) are equiva- 
lent to 
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Q = positive semidefinite; IQ 1 = 0; IQ1 I = 0. (10) 

Here QI is the matrix obtained from Q by substitutingD(Ql/DI.Bi for an 
appropriate row, i.e., a row possessing at least one element with a cofactor 
different from zero. 

Eq. (10) to make this statement valid also for rank Q = n - rn with 1 < m 
Thus, the problem becomes: Which conditions have to be substituted for 

< n? - 
In thls case a rearrangement of the variables of A c  is always possible such 

that the (n - m)-rowed determinant 0 formed by the elements of the lower 
right-hand-side corner of Q can be assumed to be different from zero with- 
out restricting the generality: 

GENERALIZED CRITERION FOR CRITICAL STATES 

For a concise formulation, the symbols Q7f and Q 7 f q  are introduced to 
designate the following determinants derived from Q :  

with uTrP =DQT&&? (7, <, r l =  1, . . . , m ; p  = 1, . . . , n). Then the follow- 
ing criterion holds: 
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1132 BERGMANN, KEHLEN, AND RATZSCH 

I f  rg(M) possesses at gust n different values, then for a thermodynamic 
state identified by (T,P$B p~), the statements of Eqs. (3a), (3b), and (4)  
are equivalent to : 

Q = positive semidefinite. (12) 

There exists such a natural number m (1 d m < n)  that 

rank Q = n  - m, (13) 

Q. .  IJP = O f o r a l l l < i < j d p d m .  (14) 

As pointed out earlier [ I l l ,  Eqs. (12) and (13) are equivalent to Eqs. (3a) 
and (3b). Hence, only the equivalence with respect to EQ (4) has to be 
shown in this paper. Assuming Eq. (3a), the variation ~ ( I B ~ B ) ~  fulfills Eq. 
(3b) if and only if 

n 

6(fBEig)o = - r B ( w F B G B ( M ) c  [rB(M)IkiYj, (1 5)  
iJ= 1 

where the vector y = (yl, . . . 
of Eq. (15) into Eq. (7) leads to 

obeys the relation Qy = 0. Introduction 

n 

i , j ,p=  1 

The second term on the right-hand side of Eq. (1 7) may be reformulated: 

n n 
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POLY DlSPE RSE POLYMER SOLUTIONS 

n n n n 

= C rap7 C c i a i  C c jpy i  C CpyYp 

a , P , y = l  i= 1 j =  1 p =  1 
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n n 

i , j , p = l  a , P , y = l  

The last equality results from Qy =0, i.e., for all Q = 1 ,  . . . , n, the relation 
n n n 

i =1 i= 1 i= 1 

applies. Thus, Eq. (16) may be rewritten to read 
n 

i , j ,p= 1 

in which 
n 

is symmetrical with respect to all indices. 

only if 
Since 0 # 0, the vector y is the solution of the equation Py = 0 if and 

m 

7= I 

(19) 

for i = m t 1, . . . , n. In the determinants Qi7,  the elements qj7 are substi- 
tuted for the elements q j i  
m) are freely choosable (permitting, in this way, the specification of m 
linearly independent spinodal directions). Equation (19) may be written 
more concisely: 

= m + 1, . . . , n). The quantities y7 (7 = 1, . . . , 
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m 
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r= 1 

with 

Equations (I8), (201, and (21) result in 

This expression equals zero for arbitrary yr (7 = 1, . . . , m )  if and only if 

The development of QTrq with respect to the first line results in 

n n 

p = m + l  p = l  

After some reformulations, the differentiation rules for determinants lead to 

n 

i, j =  1 

and hence, 
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POLY Dl SPE RSE POLYMER SO LUTIONS 1135 

Therefore, Eq. (22) is fulfilled if and only if Q7rQ = 0 for all T, f ,  77 = 1, . . . , m. 
Since QTr7) is symmetrical with respect to all indices, Eq. (22) and, hence, 
Eq. (4) are fulfilled if, and only if, Eq. (14) is valid. 

DISCUSSION 

At first sight there seems to be no essential difference between the criterion 
stated by Eqs. (12)-(14) and that presented earlier [3]. Also here, m(m + 1) 
(m + 2)/6 additional equations (of the type of Eq. 14) occur, and Eqs. (12)- 
(14) result in Eq. (10) if m = 1. However, the difference is indeed enormous. 
According to the criterion presented earlier [3], the additional equations 
contain determinants whose order for polydisperse polymer solutions equals 
approximately 1000 or 2000. In contrast to this, the determinants occurring 
in Eqs. (14) are of order one or two since the excess part r in Eq. (2)-accord- 
ing to Gibbs free energy relations--may be presumed to contain no more than 
three moments (usually the zeroth, the minus first, and the first moment 
corresponding to the overall segment fraction XB, the number-average and the 
weight-average segment number). Therefore, the new criterion permits the 
numerical calculation of degenerate critical states with much lower computa- 
tional burden and with much higher precision or, in favorable cases, even an 
analytical evaluation. 

A further result of the new criterion is the statement that for a moment- 
dependent excess part r of the Gibbs free energy relation, the number of 
linearly independent spinodal directions (i.e., of those S(~B 6 ~ ) ~  resulting in 
li’AE/RT) = 0) in a critical point cannot be larger than the number of mo- 
ments occurring in the r-relation. 
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